## Trump Taj Mahal Hotel

Atlantic City, New Jersey


# Technical Report Number Three <br> Lateral System Analysis and Confirmation Design 

Prepared By: Stephen Reichwein, Structural Option
Faculty Advisor: Dr. Andres Lepage
The Pennsylvania State University
Department of Architectural Engineering
Date: December 3, 2007

## Executive Summary

The purpose of this report is to determine through analytical methods the response of the lateral force resisting system of the Trump Taj M ahal Hotel in Atlantic City, New Jersey, to effects of wind and seismic loads.

In order to effectively determine the forces acting on the shear wall, a simplified ETABS model was constructed. The model was analyzed under the effects of wind loads provided by a wind tunnel test performed by DFA. The building modes and periods, center of rigidities, displacements, wall forces, and frame forces were determined directly from ETABS. Pier forces were input into PCA column along with the current design of the pier under investigation. An interaction diagram was than developed to determine whether or not the strength of the pier was adequate to handle the forces. Shear strength was checked by hand per requirements of ACI 318-05.

M ost of the design criteria were met or exceeded, with the exception of a few shear wall piers that failed either because of excessive tensile forces or shear forces. However, these failures are generally within $10 \%$. Lateral displacements meet the requirements of $\mathrm{H} / 400$ and the story drift limit of 0.5 ", as specified by the New Jersey State Uniform Construction Code. In fact, the lateral displacements calculated in ETABS are well below these limits. This may be something to consider later in the semester with a shear wall reduction depth study.

## Table of Contents

Section Page
I. Introduction ..... 3
II. Existing Structural Systems ..... 4
III. Lateral System Design Criteria ..... 9
IV. Load Path ..... 14
V. ETABS Analysis ..... 15
VI. Lateral System Strength Spot Checks ..... 17
VII. Conclusion ..... 18
VIII. Appendix ..... 19

## Introduction

Atlantic City is known as the "Las Vegas" of the east coast. It is home to some of the largest and finest hotels, resorts, and casinos, as well as one of the largest boardwalks in the world. Donald Trump came to Atlantic City with a vision to create one of the world's finest casinos along with Atlantic City's most luxurious hotels. At the 900 block of the Atlantic City boardwalk in 1990, Trump unveiled the first Taj M ahal Hotel, unprecedented in craftsmanship and opulence. Its stern use of iconic architecture, rich with lights and signage, matches that of the rest of Atlantic City.

The Trump Taj Mahal Hotel Tower at 1000 Boardwalk resembles a powerful type of iconic architecture, signifying the power and wealth of Donald Trump along with the luxury you can expect from such a hotel. Such iconic characteristics that are clearly expressed on the building include large, bold signage (Both the Taj M ahal running down the east and west sides of the building and Trump across the top of the building.), a unique and pure geometric plan that rivals its neighboring predecessor, and it's overwhelming height as compared to the neighboring buildings along the ocean front skyline. The facade of the building is constructed with mostly modern materials, comprised of a reflective glass curtain wall, metal panels, and architectural pre-cast concrete panels.

The new Taj M ahal Hotel will serve as an expansion to its older and neighboring hotel tower that was built in the early 1990s. It will provide an additional 786 guest suites, ranging from spacious single rooms to deluxe 3 bay super suites. The tower will have 732,000 square feet of usable space and will soar 435 feet, 40 stories, into the air, making it an icon in the view of the Atlantic City skyline.

The current gravity floor system of the Trump Taj M ahal is a filigree flat plate system. This system utilizes pre-cast thin plates as its base and for formwork. Typical floors were designed for a 10 " voided slab, where foam voids are cast into the top of the plank. These voids result in approximately a $30 \%$ reduction in dead weight as compared to a traditional flat plate system.

The main components of the lateral force resisting system of the Trump Taj M ahal are ordinary reinforced concrete shear walls. These walls are typically 16 " thick with varying concrete compressive strengths (anywhere from 9000 psi at the base to 5000 psi at the top). The walls have multiple openings and are connected to each other via link beams. These link beams provide added stiffness to the overall structure.

## Existing Structural Systems

The proceeding section contains detailed descriptions of the various structural systems that have been designed by the engineer of record for the Trump Taj Mahal Hotel. Descriptions of the foundation system, columns, floor systems, and lateral system are provided, in that respective order. Figure 1 provides an illustration of the framing plan of a typical level of the tower.


Figure 1: Typical Framing Plan

## Foundation System

The foundation system of the Trump Taj Mahal Hotel is comprised of a mat foundation, as recommended by the geotechnical report. The perimeter of the mat foundation is $6^{\prime}-0$ " thick, the center $9^{\prime}-0$ " thick. \#11 bars at 10 " each way, top and bottom are provided for the
$9^{\prime}-0$ " section and \#11 at 15 " each way, top and bottom are provided for the $6^{\prime}-0$ " section. Additional reinforcing is provided around openings and columns. The mat foundation acts as the floor system of level one, no topping slab provided.


Figure 2: Typical Section at M at Foundation

## Columns

Square, rectangular, and round reinforced concrete columns are used throughout the hotel tower, with a wide range of sizes and reinforcing arrangements. Figure 3 provides a typical detail that illustrates the tie arrangements, vertical reinforcing steel arrangements, and dimensions of the columns that are found throughout the tower. Specified compressive strength of concrete used for the columns varies by level, generally higher at lower levels. See Section III (M aterial Strengths) for details.


Figure 3: Detail of Typical Column Types

## Floor Systems

Two types of floor systems are used on a typical level of the hotel tower. A one-way pre-stressed filigree flat plate system is utilized in the areas outside of the central elevator core. Inside of the core, a conventionally reinforced flat plate system is utilized. 5000psi is the specified compressive strength of both systems.

A filigree flat plate floor slab acts as a composite system, utilizing both pre-cast and cast-in-place components. $8^{\prime}-0^{\prime \prime}$ wide $2^{1 / 2 \prime}$ thick pre-stressed planks form the base of the system. Foam voids are cast on top of the planks, lowering the dead weight of the system. However, some floors of the tower with higher loads may have solid slabs instead of voided slabs. A layer of concrete is poured on top of the planks and $21 / 4 "$ on top of the voids, if present. $10 \times 10$ W 4xW4 Welded Wire Fabric is used as temperature reinforcing for the cast -in-place concrete.

The loads of the filigree flat slab are transferred to the columns via $8^{\prime}-0^{\prime \prime}$ wide conventionally reinforced in-slab beams that run $32^{\prime}-0^{\prime \prime} \times 16^{\prime}-0^{\prime \prime}$ bays, typically. The filigree flat slabs are connected to the in-slab beams by reinforcing dowels, typically \#7 bars on the top layer. The base of the beams are formed using the filigree planks, however the pre-stressed tendons are not utilized in the design strength of the beam.

Please note, because this particular type of filigree system is proprietary to M id-State Filigree, construction documents issued by the structural engineering consultant only indicate design moments.


Figure 4: Filigree Flat Plate System


Figure 5: Filigree Construction Photo

## Filigree Flat Slab System (Non-Core)

The proceeding diagram describes the various filigree flat slabs, by level number.

| Level Number | Solid or Voided | Total Depth (inches) |
| :---: | :---: | :---: |
| 2,3 | Voided | 12 |
| 4 | Solid | 10 |
| 5 thru 39 | Voided | 10 |
| 40 | Solid | 12 |
| 41 | Solid | 10 |

## Conventionally Reinforced Flat Plate System (Core)

The proceeding diagram describes the various conventionally reinforced flat plate slabs, by level number.

| Level | Reinforcing | Thickness (inches) |
| :---: | :---: | :---: |
| 2,3 | \#6 @ 12" Bottom, Each Way | 12 |
| 4 | $\# 7$ @ 12" Bottom, Each Way | 10 |
| 5 thru 39 | \#6 @ 12" Bottom, Each Way | 10 |
| 40 | \#6 @ 12" Bottom, Each Way | 12 |
| 41 | \#7 @ 12" Bottom, Each Way | 10 |

## Lateral Force Resisting System

The primary lateral force resisting system of the hotel tower is comprised of four shear walls, encompassing the elevator core at the geometric center of the tower's plan. A series of braced frames are used to stiffen the sign support structure at the top of the tower.

## Ordinary Reinforced Concrete Shear Walls

Four shear walls, spanning to level 41 , are the primary lateral force resisting system of the Trump Taj Mahal Hotel. Two 60' long walls resist


Figure 6: Location of Shear Walls the forces in the east/west direction, as well as the north/south direction. These four walls form the elevator core that lies in the geometric center of the tower. Because of the symmetry of both the plan of the building and the shear wall core, it is highly unlikely that torsion will control the design of the shear walls.

The shear walls decrease in thickness, 24 " from levels 1 through 4 and 16" from levels 4 through 41. Because numerous openings exist, link (coupling) beams provide load transfer across the openings. Specified compressive strength of the concrete used for the shear walls varies by level (See M aterial Strengths Section). Detailed elevations of each shear wall are provided in Appendix A.

## Braced Frames

Because the framing system supporting the large sign at the top of the tower is long and narrow, lateral bracing is needed to stiffen the system against strong wind forces. In the short (north/south) direction, seven X braced frames with single angle diagonals and one single strut braced frame with double angle diagonals. The long (east/west) direction does not require much lateral stiffening because of its depth. Only two X braced frames with single angle diagonals are provided.

The loads of these braced frames are transferred to the concrete floor system on the $41^{\text {st }}$ level below. The concrete floor system acts as a rigid diaphragm, transferring the loads to the concrete shear walls.


Figure 7: Braced Frame 1


Figure 8: Braced Frame 2


Figure 9: Braced Frame 3

## Lateral System Design Criteria

A general list of relevant structural criteria will be discussed to clarify all design assumptions of the lateral force resisting system. The criteria include codes and standards, deflection limitations, material strengths, gravity loads, wind loads, and earthquake loads.

## Codes and Standards

## Building Code:

New Jersey State Uniform Construction Code (IBC 2000)

## Loads:

M inimum Design Loads for Buildings and Other Structures, ASCE 7-02
American Society of Civil Engineers
Comment: Standards of ASCE 7-02/7-05 are referenced by IBC

## Structural Concrete:

ACl 318-02
American Concrete Institute

M anual of Standard Practice, 27th Edition, M arch 2002
Concrete Reinforcing Steel Institute

## Structural Steel:

Steel Construction M anual, 13th Edition
American Institute of Steel Construction

Detailing for Steel Construction
American Institute of Steel Construction

## Welding:

Structural Welding Code - Steel, AWS D1.1-2002
Structural Welding Code - Reinforcing Steel, AWS D1.4-1998

## Metal Decking:

Design M anual for Floor Decks and Roof Decks
Steel Deck Institute

## Deflection Limitations

Because the Trump Taj M ahal falls under residential construction defined by the New Jersey State Uniform Construction Code, lateral deflection limits are H/400 total drift or a story drift of 0.5", whichever controls. This translates to a total allowable lateral drift of 13 " at roof level.

## Material Strengths

The following tables list the design strengths and properties of various building materials, as specified by the structural engineer of record.

Concrete Compressive Strengths

| Location | $\mathbf{f}^{\prime} \mathbf{c} @ 28$ Days <br> (PSI) | Unit Wt. <br> (PCF) |  |
| :---: | :---: | :---: | :---: |
| Shear Walls: | Below Level 12 | $9000^{*}$ | 145 |
|  | Levels 12 to 23 | $7000^{*}$ | 145 |
|  | Above Level 23 | 5000 | 145 |

* Indicates 56 - Day Strength


## Reinforcing Steel

| Deformed Reinforcing Bars |  |
| :---: | :---: |
| \#10 and Smaller |  |
| \#11 and Larger | ASTM A615, Grade 60 |
| ASTM A615, Grade 75 |  |
| Weldable Deformed Reinf Bars | ASTM A706 |
| Welded Wire Fabric (WWF) | ASTM A185 |
| Seven-Wire Stress Relieved Prestressing Strands | ASTM A416, Grade 270 |
| Epoxy Coated Reinf Bars | ASTM A775 |
| Reinforcing Steel M echanical Splice Couplers | Lenton Splice Couplers or Approved Equal |
| Doweling Adhesive for Anchoring Reinf Bars into Existing |  |
| Concrete | Hilti System or Powers Acrylic 100 System |

## Gravity Loads

The dead weight of non-core areas will be taken as 88 psf, the weight of a typical 10 " voided filigree slab, plus an additional 15 psf. The self weight of the core areas will be taken as 125 psf, the weight of a 10" flat plate system, plus an additional 15psf. Both core and non-core areas will have an additional 40psf live load. All loads are per the engineer of record's drawings and conform to ASCE 7.

## Wind Loads

Wind loads for the Trump Taj M ahal were computed using a wind tunnel test performed by DFA; 100 year recurrent wind speeds were used. Results of the wind tunnel test can be found in Appendix B. Base shears for the north/south and east west directions are 3445 kips and 2500 kips , respectively. Figure 10 lists the load cases that were issued by DFA. These load cases were used in the confirmation analysis of the lateral system and were factored as ultimate loads in accordance with ASCE 7 (See ETABS Analysis Section).

Table 4: Load Combinations In Orthogonal Directions

| Load Case | Y-Axis (\%) | X-Axis (\%) | Z-Axis (\%) |
| :---: | :---: | :---: | :---: |
| 1 | +100 | +50 | +50 |
| 2 | $+100$ | +50 | -50 |
| 3 | $+100$ | -50 | $+50$ |
| 4 | $+100$ | -50 | -50 |
| 5 | -100 | +50 | +50 |
| 6 | -100 | $+50$ | -50 |
| 7 | -100 | -50 | +50 |
| 8 | -100 | -50 | -50 |
| 9 | +65 | +100 | +60 |
| 10 | +65 | +100 | -60 |
| 11 | -65 | +100 | +60 |
| 12 | -65 | +100 | -60 |
| 13 | +65 | -100 | +60 |
| 14 | +65 | -100 | -60 |
| 15 | -65 | -100 | +60 |
| 16 | -65 | -100 | -60 |
| 17 | +65 | $+50$ | +60 |
| 18 | +65 | -50 | +60 |
| 19 | -65 | +50 | -60 |
| 20 | -65 | -50 | -60 |

Figure 10: Load Cases to be used with the Wind Tunnel Test Results

The proceeding table contains the story forces and overturning moments at the base of the tower (obtained from the wind tunnel test report).

| Level | Height (ft) | Force N/S, Y Direction (kips) | Overturning Moment (ft-kips) | Force E/W, X Direction (kips) | Overturning Moment (ft-kips) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.00 |  |  |  |  |
| 2 | 16.00 | 8.80 | 140.80 | 6.40 | 102.40 |
| 3 | 26.00 | 12.60 | 468.40 | 9.20 | 341.60 |
| 4 | 62.00 | 41.10 | 3016.60 | 29.80 | 2189.20 |
| 5 | 71.58 | 25.60 | 4849.13 | 18.60 | 3520.65 |
| 6 | 81.17 | 29.10 | 7211.08 | 21.10 | 5233.27 |
| 7 | 90.75 | 32.50 | 10160.46 | 23.60 | 7374.97 |
| 8 | 100.33 | 35.80 | 13752.39 | 26.00 | 9983.63 |
| 9 | 109.92 | 39.20 | 18061.13 | 28.50 | 13116.26 |
| 10 | 119.50 | 42.60 | 23151.83 | 31.00 | 16820.76 |
| 11 | 129.08 | 46.10 | 29102.57 | 33.40 | 21132.14 |
| 12 | 138.67 | 49.50 | 35966.57 | 35.90 | 26110.28 |
| 13 | 148.25 | 53.00 | 43823.82 | 38.40 | 31803.08 |
| 14 | 157.83 | 56.40 | 52725.62 | 40.90 | 38258.46 |
| 15 | 167.42 | 59.80 | 62737.13 | 43.40 | 45524.34 |
| 16 | 177.00 | 63.30 | 73941.23 | 45.90 | 53648.64 |
| 17 | 186.58 | 66.70 | 86386.34 | 48.40 | 62679.28 |
| 18 | 196.17 | 70.10 | 100137.63 | 50.90 | 72664.16 |
| 19 | 205.75 | 73.40 | 115239.68 | 53.30 | 83630.63 |
| 20 | 215.33 | 76.90 | 131798.81 | 55.80 | 95646.23 |
| 21 | 224.92 | 80.30 | 149859.62 | 58.30 | 108758.88 |
| 22 | 234.50 | 83.70 | 169487.27 | 60.80 | 123016.48 |
| 23 | 244.08 | 87.20 | 190771.33 | 63.30 | 138466.95 |
| 24 | 253.67 | 90.60 | 213753.53 | 65.80 | 155158.22 |
| 25 | 263.25 | 96.00 | 239025.53 | 69.70 | 173506.74 |
| 26 | 272.83 | 99.60 | 266199.73 | 72.30 | 193232.59 |
| 27 | 282.42 | 103.10 | 295316.89 | 74.80 | 214357.36 |
| 28 | 292.00 | 106.60 | 326444.09 | 77.40 | 236958.16 |
| 29 | 301.58 | 110.10 | 359648.42 | 79.90 | 261054.67 |
| 30 | 311.17 | 113.40 | 394934.72 | 82.30 | 286663.68 |
| 31 | 320.75 | 116.90 | 432430.39 | 84.90 | 313895.36 |
| 32 | 330.33 | 120.50 | 472235.56 | 87.40 | 342766.49 |
| 33 | 339.92 | 124.00 | 514385.23 | 90.00 | 373358.99 |
| 34 | 349.50 | 127.50 | 558946.48 | 92.50 | 405687.74 |
| 35 | 359.08 | 131.00 | 605986.39 | 95.10 | 439836.57 |
| 36 | 368.67 | 134.50 | 655572.06 | 97.60 | 475818.43 |
| 37 | 378.25 | 138.00 | 707770.56 | 100.20 | 513719.08 |
| 38 | 387.83 | 132.70 | 759236.04 | 96.30 | 551067.43 |
| 39 | 397.42 | 142.10 | 815708.95 | 103.20 | 592080.83 |
| 40 | 407.00 | 233.30 | 910662.05 | 169.30 | 660985.93 |
| Roof | 434.83 | 191.40 | 993889.15 | 139.00 | 721427.77 |
|  |  | 3445.00 | 10844935.18 | 2500.60 | 7871598.32 |

## Seismic Loads

Seismic loads for the Trump Taj M ahal were calculated using ASCE 7-05, Equivalent Lateral Force Procedure. The calculations and parameters can be found in a spreadsheet referenced in Appendix C of this report. The base shear for both directions was calculated to be approximately 1086kips.


Figure 12: Seismic Force Distribution, Either Direction

## Load Path



Note: Out of plane shear forces shown for simplicity of diagram

## ETABS Analysis

A simplified ETABS model was constructed to distribute the lateral loads of the tower. The piers of the shear wall were modeled using shell elements, out of plane forces considered, with the respective properties of the wall. The link beams were modeled as frame elements. The wall was meshed using square elements with a maximum dimension of 24 ". All elements were connected with a rigid diaphragm applied at each floor. A mass equivalent to that of the floor system was applied to that diaphragm.

The engineer of record indicated that the tower was controlled by the 100 year wind forces of the DFA wind tunnel test. Because of this, seismic loads were overlooked in order to further investigate the effects of wind. Wind loads were manually applied to the model at the center of mass of each story. Each of the 20 different load cases provided by DFA was investigated.

Because a 100 year wind velocity was used, property modifiers were applied to the wall and coupling beams to account for cracking over time. 0.7 was applied to f 22 for the walls and 0.35 was applied to $\lg 33$ for the coupling beams. P-delta effects were considered; two iterations were performed.

Figure 15 contains the modal analysis of the shear wall core. The first mode occurred in the Y-direction (north/south) at 3.128s. The second mode occurred in the X-direction (east/west) at 2.752s. The third mode occurred in the Z-direction (torsion) at 1.77s.


Figure 14: ETABS Shear Wall M odel

Figure 15: ETABS M odal Analysis Results

Figure 16 provides the ETABS calculated centers of rigidity of the structure. The center of rigidity favors the northeast corner of the shear wall core. These results make sense because the calculated points are closest to the stiffest elements of the shear wall core.


Figure 16: ETABS Calculated Center of M asses and Center of Rigidities

Figure 17 provides the ETABS calculated displacements and story drifts of the shear walls. These deflections are well below the limits of H/400 (13") total drift and $0.5^{\prime \prime}$ story drift.

| Level | Total Deflection | Story Driit | Level | Total Defilection | Story Driif |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | 7.7651 | 0.3391 | 21 | 3.8812 | 0.1857 |
| 40 | 7.426 | 0.2411 | 20 | 3.6955 | 0.199 |
| 39 | 7.1849 | 0.1626 | 19 | 3.4965 | 02079 |
| 38 | 7.0223 | 0.1677 | 18 | 3.2886 | 02148 |
| 37 | 6.8546 | 0.1727 | 17 | 3.0738 | 02195 |
| 36 | 6.6819 | 0.1772 | 16 | 2.8543 | 0.2221 |
| 35 | 6.5047 | 0.1815 | 15 | 2.6322 | 0.2228 |
| 34 | 6.3232 | 0.1854 | 14 | 2.4094 | 0.2218 |
| 33 | 6.1378 | 0.1887 | 13 | 2.1876 | 0.2188 |
| 32 | 5.9491 | 0.1916 | 12 | 1.9688 | 0.2127 |
| 31 | 5.7575 | 0.194 | 11 | 1.7561 | 02073 |
| 30 | 5.5635 | 0.1958 | 10 | 1.5488 | 0.2008 |
| 29 | 5.3677 | 0.1968 | 9 | 1.348 | 0.1929 |
| 28 | 5.1709 | 0.197 | 8 | 1.1551 | 0.1835 |
| 27 | 4.9739 | 0.1963 | 7 | 0.9716 | 0.1723 |
| 26 | 4.7776 | 0.1943 | 6 | 0.7993 | 0.1593 |
| 25 | 4.5833 | 0.1908 | 5 | 0.64 | 0.1409 |
| 24 | 4.3925 | 0.1858 | 4 | 0.4991 | 0.4111 |
| 23 | 42067 | 0.1766 | 3 | 0.088 | 0.0498 |
| 22 | 4.0301 | 0.1489 | 2 | 0.0382 | 0.0382 |

Figure 17: ETABS Calculated Lateral Displacements

## Lateral System Strength Spot Checks

Spot checks were performed on various components of the shear wall core. Shear wall piers were checked on levels 5 and 20. Forces for each of the 20 load cases were extracted from ETABS and placed into a spreadsheet, where the largest moments, shears, and axial loads were found. Additional axial loads from live and dead loads were also taken into account based on the tributary area of the pier (See Appendix D). Shear strength was checked by hand following guidelines set forth in $\mathrm{ACl} 318-05$; calculations and results can be found in Appendix E. M oment and axial strengths of individual piers were checked using PCA column. Calculations and results for each pier can be found in Appendix F.

The following load combinations provided by ASCE 7-02 were used to determine the design forces:

1. 1.4 DL
2. $1.2 \mathrm{DL}+1.4 \mathrm{LL}$
3. $1.2 \mathrm{DL}+1.6 \mathrm{~W}+1.0 \mathrm{LL}$
4. $1.2 \mathrm{DL}-1.6 \mathrm{~W}+1.0 \mathrm{LL}$
5. $0.9 \mathrm{DL}+1.6 \mathrm{~W}$
6. 0.9 DL-1.6 W

As seen by the interaction diagrams in Appendix F, most of the design loads are less than the ultimate capacity of the wall piers. The only piers that did not pass the spot checks were at the $20^{\text {th }}$ level of shear wall 3 . Piers 23,24 , and 25 had at least four load combinations that had fallen outside the interaction diagram on the tension side. Simplifications in the ETABS model developed by Stephen Reichwein may have caused these small discrepancies. The actual shear wall core was designed with chamfers on the corners. These chamfers were omitted from the ETABS model referenced in this report.

The shear check verifies the design of the lateral force resisting system. M ost of the shear strengths of the piers exceeded the ultimate shear load. A few have fallen short, but are within 10\%. Again, these small discrepancies are possibly a result of simplifications.

## Conclusion

In order to effectively determine the forces acting on the shear wall, a simplified ETABS model was constructed. The model was analyzed under the effects of wind loads provided by a wind tunnel test performed by DFA. The building modes and periods, center of rigidities, displacements, pier forces, and frame forces were determined directly from ETABS. Pier forces were input into PCA column along with the current design of the pier under investigation. An interaction diagram was than developed to determine whether or not the strength of the pier was adequate to handle the forces. Shear strength was checked by hand per requirements of ACl 31805

M ost of the design criteria were met or exceeded, with the exception of a few shear wall piers that failed either because of excessive tensile forces or shear forces. Simplifications taken by Stephen Reichwein in the development of his ETABS model may be the cause of some discrepancies.

Lateral displacements meet the New Jersey State Uniform Construction Code requirements of H/400, as well as a story drift limit of 0.5 ". In fact, the lateral displacements calculated by ETABS are well below these limits. This may be something to consider later in the semester as a structural depth study.

The first building period calculated by ETABS was 3.128 s . As a rule of thumb, approximate building periods are calculated by the equation Tapprox $=0.10 \times$ (Number of Stories), where the story height is 12 typically. Adjusting this equation for the building height of 9 '-7" for the Trump Taj M ahal Hotel, Tapprox is equal to 3.2 s , very close to 3.128 s calculated by the ETABS model. This small spot check confirms the ETABS model used for Technical Report Three.

## Appendix

Section Page
A. Shear Wall Elevations ..... 20
B. Wind Tunnel Test ..... 21
C. Seismic Load Calculations ..... 24
D. Shear W all Load Takedown ..... 25
E. Shear W all Shear Check ..... 29
F. PCA Column Calculations and Results ..... 31

## Appendix A - Shear Wall Elevations



## Appendix B - Wind Tunnel Report Performed by DFA

dfa

Table 3a: Effective Static Wind Loads At Each Floor Level Corresponding To 50 Year Base Moments (With Phase II Present) (Continued)

Structural Damping of $\mathbf{0 . 0 2 0}$

$$
\mathrm{fx}=0.326 \mathrm{~Hz}, \mathrm{fy}=0.302 \mathrm{~Hz}, \mathrm{fz}=0.517 \mathrm{~Hz}
$$

(Based on Hurricane Wind Data)

| Floor | Height $f t$ | $\begin{aligned} & \text { FX } \\ & \text { kip } \end{aligned}$ | $\begin{aligned} & \text { Fy } \\ & \text { kip } \end{aligned}$ | $\begin{gathered} \mathrm{Mz} \\ \text { kip-ft } \times 10^{2} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 21 | 224.86 | 58.3 | 80.3 | 0.89 |
| 20 | 215.28 | 55.8 | 76.9 | 0.85 |
| 19 | 205.70 | 53.3 | 73.4 | 0.91 |
| 18 | 196.12 | 50.9 | 70.1 | 0.87 |
| 17 | 186.54 | 48.4 | 66.7 | 0.82 |
| 16 | 176.96 | 45.9 | 63.3 | 0.78 |
| 15 | 167.38 | 43.4 | 59.8 | 0.74 |
| 14 | 157.80 | 40.9 | 56.4 | 0.70 |
| 13 | 148.22 | 38.4 | 53.0 | 0.65 |
| 12 | 138.64 | 35.9 | 49.5 | 0.61 |
| 11 | 129.06 | 33.4 | 46.1 | 0.57 |
| 10 | 119.48 | 31.0 | 42.6 | 0.53 |
| 9 | 109.90 | 28.5 | 39.2 | 0.48 |
| 8 | 100.32 | 26.0 | 35.8 | 0.44 |
| 7 | 90.74 | 23.6 | 32.5 | 0.40 |
| 6 | 81.16 | 21.1 | 29.1 | 0.36 |
| 5 | 71.58 | 18.6 | 25.6 | 0.32 |
| 4 | 62.00 | 29.8 | 41.1 | 0.39 |
| 3 | 28.00 | 9.2 | 12.6 | 0.15 |
| 2 | 18.00 | 6.4 | 8.8 | 0.10 |
| $\Sigma$ |  | 2500.7 | 3444.9 | 41.0 |

Table 3a: Effective Static Wind Loads At Each Floor Level Corresponding To 50 Year Base Moments (With Phase II Present)

Structural Damping of $\mathbf{0 . 0 2 0}$
$\mathrm{fx}=0.326 \mathrm{~Hz}, \mathrm{fy}=0.302 \mathrm{~Hz}, \mathrm{fz}=0.517 \mathrm{~Hz}$
(Based on Hurricane Wind Data)

| Floor | Height <br> $\mathbf{f t}$ | Fx <br> kip | Fy <br> klp | Rzz <br> kip-ft $\times 10^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| Roof | 437.22 | 139.0 | 191.4 | 1.71 |
| 40 | 414.72 | 169.3 | 233.3 | 2.66 |
| 39 | 399.72 | 103.2 | 142.1 | 1.66 |
| 38 | 387.72 | 96.3 | 132.7 | 1.58 |
| 37 | 378.14 | 100.2 | 138.0 | 1.67 |
| 36 | 368.56 | 97.6 | 134.6 | 1.63 |
| 35 | 358.98 | 96.1 | 131.0 | 1.59 |
| 34 | 349.40 | 92.5 | 127.5 | 1.54 |
| 33 | 339.82 | 90.0 | 124.0 | 1.50 |
| 32 | 330.24 | 87.4 | 120.5 | 1.46 |
| 31 | 320.66 | 84.9 | 116.9 | 1.42 |
| 30 | 311.08 | 82.3 | 113.4 | 1.37 |
| 29 | 301.50 | 79.9 | 110.1 | 1.33 |
| 28 | 291.92 | 77.4 | 106.6 | 1.29 |
| 27 | 282.34 | 74.8 | 103.1 | 1.25 |
| 26 | 272.76 | 72.3 | 99.6 | 1.21 |
| 25 | 283.18 | 69.7 | 96.0 | 1.16 |
| 24 | 253.60 | 65.8 | 90.6 | 1.12 |
| 23 | 244.02 | 63.3 | 97.2 | 1.08 |
| 22 | 234.44 | 60.8 | 83.7 | 1.03 |



Axes Designation for Wind Tunnel Report

## Appendix C - Seismic Loads per ASCE 7 Equivalent Lateral Force Procedure



| Level | Area Non Core (sf) | Area Core (sf) | Tributary Height of Level (ft) | $\underset{(\mathrm{ft})}{\text { Perimeter }}$ <br> (ft) | Façade <br> Wt. (psf) | Self <br> Weight <br> Core <br> (psf) | Self <br> Weight <br> Non Core <br> (psf) | Shear Wall <br> and Column <br> Self Weight <br> (kips) | SuperImposed DL Core (psf) | Super- Imposed DL Non Core (psf) | $\begin{gathered} \text { Weight of } \\ \text { Level } \\ \text { (kips) } \\ \hline \end{gathered}$ | Elevation Height (feet) | $w_{x}{ }^{\text {W }}{ }^{\text {k }}$ | $\left(w_{x} h_{x}{ }^{k} / \sum w_{x} h_{x}{ }^{k}\right) x V_{b}$ Shear Per Floor (kips) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sign | N/A | N/A | 36.00 | 400 | 20 | N/A | 0 | 70 | 0 | 0 | 358 | 470.83 | 12524409.81 | 11.18 |
| Roof | 13800 | N/A | 13.92 | 465 | 15 | N/A | 120 | 925 | N/A | 30 | 3092 | 434.83 | 94492632.96 | 84.32 |
| 40 | 14400 | 3500 | 18.71 | 565 | 15 | 145 | 145 | 1240 | 30 | 30 | 4531 | 407.00 | 123739868.4 | 110.42 |
| 39 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 25 | 15 | 2404 | 397.42 | 63037935.43 | 56.25 |
| 38 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 387.83 | 59595054.84 | 53.18 |
| 37 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 378.25 | 57113357.31 | 50.97 |
| 36 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 368.67 | 54675288.16 | 48.79 |
| 35 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 359.08 | 52281184.61 | 46.66 |
| 34 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 349.50 | 49931395.49 | 44.56 |
| 33 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 339.92 | 47626281.94 | 42.50 |
| 32 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 330.33 | 45366218.21 | 40.48 |
| 31 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 320.75 | 43151592.55 | 38.51 |
| 30 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 311.17 | 40982808.12 | 36.57 |
| 29 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 301.58 | 38860284.05 | 34.68 |
| 28 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 292.00 | 36784456.64 | 32.83 |
| 27 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 282.42 | 34755780.56 | 31.02 |
| 26 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 272.83 | 32774730.34 | 29.25 |
| 25 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 263.25 | 30841801.92 | 27.52 |
| 24 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 253.67 | 28957514.42 | 25.84 |
| 23 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 244.08 | 27122412.16 | 24.20 |
| 22 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 234.50 | 25337066.88 | 22.61 |
| 21 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 224.92 | 23602080.28 | 21.06 |
| 20 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 215.33 | 21918086.94 | 19.56 |
| 19 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 205.75 | 20285757.63 | 18.10 |
| 18 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 196.17 | 18705803.12 | 16.69 |
| 17 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 186.58 | 17178978.6 | 15.33 |
| 16 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 177.00 | 15706088.87 | 14.02 |
| 15 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 167.42 | 14287994.42 | 12.75 |
| 14 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 157.83 | 12925618.59 | 11.53 |
| 13 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 148.25 | 11619956.21 | 10.37 |
| 12 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 138.67 | 10372084.04 | 9.26 |
| 11 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 129.08 | 9183173.502 | 8.19 |
| 10 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 119.50 | 8054506.508 | 7.19 |
| 9 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 109.92 | 6987495.351 | 6.24 |
| 8 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 100.33 | 5983708.208 | 5.34 |
| 7 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 90.75 | 5044902.475 | 4.50 |
| 6 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 81.17 | 4173069.39 | 3.72 |
| 5 | 14400 | 3500 | 9.58 | 565 | 15 | 120 | 90 | 303 | 15 | 15 | 2369 | 71.58 | 3370495.55 | 3.01 |
| 4 | 14400 | 3500 | 22.79 | 565 | 25.11 | 120 | 120 | 1923 | 30 | 30 | 4931 | 62.00 | 5495872.279 | 4.90 |
| 3 | 14400 | 3500 | 23.00 | 565 | 63 | 170 | 110 | 2027 | 30 | 30 | 5562 | 26.00 | 1414689.335 | 1.26 |
| 2 | 14400 | 3500 | 21.00 | 565 | 63 | 145 | 110 | 1145 | 30 | 30 | 4521 | 16.00 | 503776.6072 | 0.45 |
|  |  |  |  |  |  |  |  |  |  | $\Sigma$ | 105935 |  | 1216734482 | 1085.83 |

## Appendix D - Shear Wall Load Takedown

## This Page Left Intentionally Blank




Pier Designations and Tributary Areas

## Load Takedown

| Project | Tech 3 |
| :--- | :--- |
| Engr | SMR |
| Date | $12 / 21 / 07$ |

## Shear Wall Load Takeoffs

|  | Core | Non-Core |
| :---: | :---: | :---: |
| Dead Load | 140 | 102 |
| Live Load | 40 | 40 |

$5^{\text {th }}$ Level

| Pier Label | Self Weight |  |  |
| :---: | :---: | :---: | :---: |
|  | Axial (kips) | $V$ (kips) | $M$ (kip-feet) |
| P7 | 736 | 40 | 145 |
| P8 | 551 | 14 | 86 |
| P10 | 667 | 25 | 126 |
| P11 | 1665 | 43 | 199 |
| P14 | 4474 | 12 | 2314 |
| P23 | 1371 | 15 | 63 |
| P24 | 580 | 0 | 9 |
| P25 | 1334 | 10 | 62 |
| P31 | 1210 | 18 | 120 |
| P32 | 1292 | 5 | 88 |
| P33 | 1272 | 12 | 61 |


| Pier Label | Additional Axial Force From Superimposed Dead and Live Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Core Trib Area (sf) | Hotel Trib Area (sf) | Levels Above | Dead Load (kips) | Live Load (kips) |
| P7 | 41 | 142 | 36 | 728 | 264 |
| P8 | 52 | 113 | 36 | 677 | 238 |
| P10 | 82 | 127 | 36 | 880 | 301 |
| P11 | 130 | 254 | 36 | 1588 | 553 |
| P14 | 410 | 630 | 36 | 4380 | 1498 |
| P23 | 100 | 257 | 36 | 1448 | 514 |
| P24 | 106 | 153 | 36 | 1096 | 373 |
| P25 | 125 | 215 | 36 | 1419 | 490 |
| P31 | 145 | 208 | 36 | 1495 | 508 |
| P32 | 184 | 200 | 36 | 1662 | 553 |
| P33 | 130 | 230 | 36 | 1500 | 518 |


| Pier Label | Wind Loads |  |  |
| :---: | :---: | :---: | :---: |
|  | Axial (kips) | $V$ (kips) | $M$ (kip-feet) |
| P7 | 2262 | 362 | 1881 |
| P8 | 1545 | 462 | 3112 |
| P10 | 1583 | 529 | 4005 |
| P11 | 5667 | 435 | 8340 |
| P14 | 11599 | 1719 | 102729 |
| P23 | 3318 | 366 | 5641 |
| P24 | 2085 | 185 | 1150 |
| P25 | 3048 | 827 | 8350 |
| P31 | 4370 | 753 | 5934 |
| P32 | 2451 | 1008 | 9641 |
| P33 | 4230 | 860 | 7144 |

## Load Takedown

| Project | Tech 3 |
| :--- | :--- |
| Engr | SMR |
| Date | $12 / 21 / 07$ |

## Shear Wall Load Takedowns

|  | Core | Non-Core |
| :---: | :---: | :---: |
| Dead Load | 140 | 102 |
| Live Load | 40 | 40 |

$20^{\text {th }}$ Level

| Pier Label | Self Weight |  |  |
| :---: | :---: | :---: | :---: |
|  | Axial (kips) | $V$ (kips) | $M$ (kip-feet) |
| P7 | 464 | 25 | 81 |
| P8 | 361 | 14 | 75 |
| P10 | 419 | 8 | 46 |
| P11 | 1009 | 31 | 135 |
| P14 | 2853 | 1 | 1350 |
| P23 | 878 | 35 | 161 |
| P24 | 393 | 7 | 42 |
| P25 | 835 | 28 | 111 |
| P31 | 750 | 11 | 24 |
| P32 | 821 | 0 | 2 |
| P33 | 800 | 11 | 22 |


| Pier Label | Additional Axial Force From Superimposed Dead and Live Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Core Trib Area (sf) | Hotel Trib Area (sf) | Levels Above | Dead Load (kips) | Live Load (kips) |
| P7 | 41 | 142 | 21 | 425 | 154 |
| P8 | 52 | 113 | 21 | 395 | 139 |
| P10 | 82 | 127 | 21 | 513 | 176 |
| P11 | 130 | 254 | 21 | 926 | 323 |
| P14 | 410 | 630 | 21 | 2555 | 874 |
| P23 | 100 | 257 | 21 | 844 | 300 |
| P24 | 106 | 153 | 21 | 639 | 218 |
| P25 | 125 | 215 | 21 | 828 | 286 |
| P31 | 145 | 208 | 21 | 872 | 297 |
| P32 | 184 | 200 | 21 | 969 | 323 |
| P33 | 130 | 230 | 21 | 875 | 302 |


| Pier Label | Wind Loads |  |  |
| :---: | :---: | :---: | :---: |
|  | Axial (kips) | $V$ (kips) | $M$ (kip-feet) |
| P7 | 1188 | 345 | 1273 |
| P8 | 810 | 377 | 1844 |
| P10 | 1189 | 365 | 2026 |
| P11 | 1639 | 432 | 5858 |
| P14 | 3330 | 1113 | 47913 |
| P23 | 4127 | 580 | 5691 |
| P24 | 2310 | 162 | 914 |
| P25 | 2975 | 739 | 6110 |
| P31 | 1185 | 508 | 2552 |
| P32 | 1221 | 622 | 3952 |
| P33 | 1684 | 599 | 3188 |

Page 1

## Appendix E-Shear Wall Shear Check

## This Page Left Intentionally Blank

## Shear Check

| Project | Tech 3 |
| :--- | :--- |
| Engr | SMR |
| Date | $12 / 21 / 07$ |

## Shear Wall Shear Check - Level 5

Controlling Load Combination: $0.9 \mathrm{DL}+1.6 \mathrm{~W}$

| $\mathrm{f}_{\mathrm{c}}$ (psi) | 9000 |
| :--- | ---: |
| $\mathrm{f}_{\mathrm{y}}(\mathrm{psi})$ | 60000 |


| $A(\# 7)$ | $A(\# 6)$ | SP1 | SP2 |
| :---: | :---: | :---: | :---: |
| 0.6 | 0.44 | 12 | 18 |

Nominal Shear Capacity: $\Phi V_{n}=\phi A_{c \gamma}\left[\alpha_{c} \sqrt{\left(f_{c}^{\prime}\right)}+\rho_{t} f_{y}\right]$


Page 1

## Shear Check

Project Tech 3
Engr SMR
Date 12/21/07

## Shear Wall Shear Check - Level 20

Controlling Load Combination: $0.9 \mathrm{DL}+1.6 \mathrm{~W}$
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}$ (psi) 9000
$\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) \quad 60000$

| $A(\# 7)$ | $A(\# 6)$ | SP1 | SP2 |
| :---: | :---: | :---: | :---: |
| 0.6 | 0.44 | 12 | 18 |

Nominal Shear Capacity: $\Phi V_{n}=\phi A_{c \gamma}\left[\alpha_{c} \sqrt{\left(f_{c}^{\prime}\right)}+\rho_{t} f_{y}\right]$


Page 1

## Appendix F - PCA Column Calculations and Results

## This Page Left Intentionally Blank

5th Level

| Pier | Quantity, Each End | Bar Size | L (in) | As (in^2) | d (in) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P7 | 6 | 11 | 102 | 9.36 | 91.94 |
| P8 | 10 | 11 | 102 | 15.6 | 87.94 |
| P10 | 10 | 11 | 120 | 15.6 | 105.94 |
| P11 | 16 | 11 | 246 | 24.96 | 225.94 |
| P14 | 16 | 11 | 696 | 24.96 | 675.94 |
| P23 | 4 | 11 | 182 | 6.24 | 173.94 |
| P24 | 8 | 11 | 82 | 12.48 | 69.94 |
| P25 | 8 | 11 | 196 | 12.48 | 183.94 |
| P31 | 6 | 11 | 186 | 9.36 | 175.94 |
| P32 | 6 | 11 | 207 | 9.36 | 196.94 |
| P33 | 8 | 11 | 207 | 12.48 | 194.94 |

20th Level

| Pier | Quantity, Each End | Bar Size | L (in) | As (in^2) | d (in) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P7 | 4 | 11 | 102 | 6.24 | 93.94 |
| P8 | 4 | 11 | 102 | 6.24 | 93.94 |
| P10 | 6 | 11 | 120 | 9.36 | 109.94 |
| P11 | 8 | 11 | 246 | 12.48 | 233.94 |
| P14 | 10 | 11 | 696 | 15.6 | 681.94 |
| P23 | 4 | 11 | 182 | 6.24 | 173.94 |
| P24 | 4 | 11 | 82 | 6.24 | 73.94 |
| P25 | 6 | 11 | 196 | 9.36 | 185.94 |
| P31 | 4 | 11 | 186 | 6.24 | 177.94 |
| P32 | 4 | 11 | 207 | 6.24 | 198.94 |
| P33 | 4 | 11 | 207 | 6.24 | 198.94 |

Pier End Reinforcement Takedown


Level 5, Page 1


pcaColumn v3.64. Licensed to: Penn State University. License ID: 52411-1010265-4-22545-26188
File: C:IUsers|StevelDesktopiThesis - Taj MahallTech 3IPCA Column|P23-5.col
Project: Tech 3

| Column: P7 |  | Engineer: SMR |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{fic}^{\text {c }}=9 \mathrm{ksi}$ | fy $=75 \mathrm{ksi}$ | $\mathrm{Ag}=2912 \mathrm{in}$ ^2 | 5 bars |
| $\mathrm{Ec}=5408 \mathrm{ksi}$ | Es $=29000 \mathrm{ksi}$ | As $=40.89$ in^2 | Rho $=1.40 \%$ |
| $\mathrm{fc}=7.65 \mathrm{ksi}$ | $\mathrm{fc}=7.65 \mathrm{ksi}$ | $\mathrm{Xo}_{0}=0.00 \mathrm{in}$ | $1 x=8.03809{ }^{\text {e }}+006$ in^4 |
| e_u $=0.003 \mathrm{in} / \mathrm{in}$ |  | $\mathrm{Y}_{0}=0.00 \mathrm{in}$ | $1 \mathrm{l}=62122.7$ in^4 |
| Beta $1=0.65$ |  | Clear spacing $=29.26$ in | Clear cover $=5.77$ in |

Confinement: Tied
phi $(\mathrm{a})=0.8$, phi $(\mathrm{b})=0.9$, phi $(\mathrm{c})=0.65$


Level 5, Page 2


Level 5, Page 3


Level 20, Page 1


Level 20, Page 2



Level 20, Page 3

